

RADIO INTERFEROMETRIC IMAGING

The fun of Fourier Transforms…

Mubela Mutale

Zambia – DARA Unit 4 – July 2019

Talk credits: J. Radcliffe, based on A. Offringa's & N. Jackson's 2015 ERIS talks and T. Muxlow's 2013 ERIS talk

Hi, Dr. Elizabeth?
Yeah, Jh... I accidentally teak
the Fourier transform of my cat... Meou!

OUTLINE

- 1. Deconvolution
	- CLEAN
	- Windowing
	- CASA clean/tclean
- 2. Data gridding & weighting
	- uv weighting
	- Telescope weighting
- 3. Wide-field imaging limits
	- Smearing
	- Non-coplanar baselines
	- Primary beam
- 4. Signal to noise & dynamic range

1. DECONVOLUTION

The basic operation of an (ideal) interferometer baseline measures (small sky approximation, $w\rightarrow 0$):

$$
V(u,v) \approx \iint I(l,m)e^{-2\pi i(ul+vm)}dldm
$$

We can, in principle, measure I(I,m) for all u, v. We can then use a Fourier transform to recover the sky brightness distribution:

$$
I(l,m) \approx \iint V(u,v)e^{2\pi i (ul+vm)} du dv
$$

However V(u,v) is not known everywhere but is sampled at particular places on the u-v plane

Nb: (l, m, n) notation is essentially the same as (x, y, z) coordinates used in the prev. talks

DECONVOLUTION

This sampling function can be described by S(u,v) and is equal to 1 when the uv plane is sampled and zero otherwise:

$$
I^{D}(l,m) = \iint V(u,v)S(u,v)e^{2\pi i(ul+vm)}dudv
$$

I^D(I,m) is known as the 'dirty image' and is related to the real sky brightness distribution by (using convolution theorem of FT):

$$
I^D(l,m) = I(l,m) * B
$$

Where *B* is known as the 'dirty beam' or the 'point spread function' and is the FT of the sampling function.

$$
B(l,m) = \iint S(u,v)e^{2\pi i(ul+vm)}dudv
$$

CASA IMAGE CONSTRUCTION

- tclean is the CASA imaging routine (this replaced clean in CASA v4.6 and earlier)
- To achieve a basic image, need to set:
	- o vis your data (measurement set)
	- o imagename (output image)
	- o niter no. of CLEAN iterations (next slide)
	- \circ imsize size of the image in pixels (needs to be as small as possible to decrease computation time)
	- o cell angular extent of each pixel (need to adequately sample the psf) Rule of thumb:

cell $\sim \lambda_f/3B$

- λ_f wavelength of highest frequency channel
- *B -* longest baseline length

DECONVOLUTION

To recover the real brightness distribution we just need to deconvolve… easier said than done:

- A vast number of images are consistent with the data inc. the dirty beam.
- We need to take a Bayesian approach supply priors (i.e. extra information/ assumptions) so we can find the most probable brightness distribution.
- Simplest scheme (but not only): Sky is mostly empty and consists of a finite number of unresolved point sources.

 \rightarrow The basis of the Hogbom CLEAN algorithm (1974)

HOGBOM CLEAN & VARIANTS

- A brute force deconvolution algorithm using the dirty beam
- Uses prior that the sky consists of unresolved point sources modelled by Dirac delta functions
- Other versions such as Clark, multiscale are variants of this algorithm

JVLA simulation, 2hr observation targeting two 0.1 Jy point sources + some phase corruption included

Dirty beam Dirty image dirty_im.psf-raster dirty_im.residual-raster 15 15 Relative J2000 Declination (arcsec) Relative J2000 Declination (arcsec) 10 10 5 5 $\mathsf O$ \overline{O} -5 -5 -10 -10 -15 -15 15 10 -10 -15 15 -15 5 O -5 10 5 0 -5 -10 Relative J2000 Right Ascension (arcsec) Relative J2000 Right Ascension (arcsec)

Hogbom CLEAN Image & residual after 1 iteration with 0.5 gain

Hogbom CLEAN Residual after 150 iterations with 0.1 gain

CLEAN map (residual+CLEAN components) after 150 iterations

CLEAN is far from perfect, but we can lend it a hand:

CLEAN consists of two 'cycles':

- I. Minor cycles subtract subimages of the dirty beam
- II. Major cycles Fourier Transform residual map and subtract

We can use windowing to tell the algorithm where the flux lies. This should be used when you **know** the flux you see is real!

UV WEIGHTING | Natural weighted images have low spatial frequencies are weighted up (due to gridding) and gives:

- Best S/N
- Worse resolution

Uniform weighted images low have spatial frequencies weighted down and the data are not utilised optimally (may be subject to a deconvolution striping instability) resulting in:

- Worse S/N
- **Best resolution**

Compromises exist:

• Briggs (robust) weighting parameter -5 to +5. (next slide)

Implementation in CASA tclean/clean

'natural'

Weighting of uv (natural, uniform, $bring$, ...)

UV WEIGHTING: 'BRIGGS WEIGHTING'

• Originally derived as a cure for striping – Natural weighting is immune and therefore most 'robust'

- Varies effective weighting as a function of local u-v weight density
	- Where weight density is low effective weighting is natural
	- Where weight density is high effective weighting is uniform
- Modifies the variations in effective weight found in uniform weighting \rightarrow more efficient use of data & lower thermal noise
- ROBUST = -5 is nearly pure uniform ROBUST = $+$ 5 is nearly pure natural ROBUST = 0 is a good compromise (Contoured)
- Can produce images close to uniform weighting resolution with noise levels close to natural weighting. See CASA [webpage](https://casa.nrao.edu/Release3.4.0/docs/userman/UserMansu258.html) for other weighting schemes!

WEIGHTING BY TELESCOPE

- Many arrays are heterogeneous e.g. e-MERLIN, EVN & AVN (when built)
- To get the best S/N need to increase weighting on larger telescopes so they contribute more.
- Nb. this can change the resolution depending on the baseline distribution.

UV TAPERING

Gaussian u-v taper or u-v range can smooth the image but at the expense of sensitivity since data are excluded or data usage is nonoptimal

Can compromise image quality in VLBI arrays by severely restricting the *u-v* coverage

Controlled by the uvtaper parameter in CASA task tclean/clean

UV TAPERING

3. WIDE-FIELD IMAGING

A 'wide-field' image is defined as:

- An image with large numbers of resolution elements across them
- Or multiple images distributed across the interferometer primary beam

In order to image the entire primary beam you have to consider the following distorting effects:

- 1. Bandwidth smearing
- 2. Time smearing
- 3. Non-coplanar baselines (or the 'w' term) Covered in advanced imaging
- 4. Primary beam response

BANDWIDTH SMEARING

Given a finite range of wavelengths

increasing radius \leftarrow pointing centre \rightarrow increasing radius

- Fringe pattern is ok in the centre but, with higher relative delay, different colours are out of phase
- BW smearing can be estimated using: ${\rm FoV} \sim$ λ $\Delta \lambda$ λ *B*
- Can be alleviated by observing and imaging with high spectral resolution with many narrow frequency channels gridded separately prior to Fourier inversion (reduces ∆λ).
- Detailed form of response depends on individual channel bandpass shapes

BANDWIDTH SMEARING

Credit T. Muxlow

NVSS image

Effect is radial smearing, corresponding to radial extent of measurements in uv plane

TIME SMEARING

- Time-average smearing (decorrelation) produces tangential smearing
- Not easily parameterized. At declination +90° a simple case exists where percentage time smearing is given by:

At other declinations, the effects are more complicated.

Standard Fourier synthesis assumes planar arrays or small (l,m) - Only true for E-W interferometers e.g. WSRT

$$
V(u, v, w) = \iint \frac{I(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + v m + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm
$$

Need to take into account the 'w' term properly in wide-fields as:

- Errors increase quadratically with offset from phase-centre
- Serious errors result if: $\theta_{\rm offset} [\text{rad}] \times \theta_{\rm offset} [\text{beams}] > 1$
- Effects are severe when imaging the entire primary beam

Result: We need to deal with $V(u, v, w)$ rather than just $V(u, v)$

Two solutions available:

- i. Faceting split the field into multiple images to maintain $l, m, w \backsim 0$ and stitch them together.
- ii. w-projection most used solution, project 3D sky brightness onto 2D tangent plane using w kernel.

See lecture on Advanced Imaging!

JVLA image of GOODS-N showing confusion from a 0.25Jy source to the SE

- Bright radio sources on the edge of the primary beam give rise to ripples in the centre of the field of view
- The primary beam is spectrally dependent, so image subtraction should include such corrections and be performed in full spectral-line mode
- Pointing errors introduce gain and phase changes on the edge of the primary beam. If severe, the apparent source structure may change – attempt multiple snapshot subtraction on timescales comparable with pointing error change

So how do we deal with these sources?

- 1. Outlier fields (the CASA default option) deconvolve the confusing source while imaging the field of interest
- 2. Peeling self-cal. on confusing source (to remove phase errors), get model & subtract source. Return to original calibration & insert model into visibilities
- 3. Direction-dependent calibration see Advanced Imaging lecture

These are listed in order of complexity - note that direction dependent calibration is not available for all telescope arrays

1. Outlier fields

If the source is out of your desired target area, then you can set a small area around the confusing source and deconvolve with the main image.

In CASA, this is achieved by setting multiple images (see right) or set an outlier file (orange box & example below)

```
#content of outliers.txt
# 
#outlier field1 
imagename='outlier1' 
imsize=[512,512] 
phasecenter = 'J2000 12h34m52.2 62d02m34.53' 
mask='box[[245pix,245pix],[265pix,265pix]]'
```


1. Outlier fields

0.25 Jy confusing source using outlier field assigned

2. Peeling If outlier fields do not work try peeling!

- After phase calibrating the data, perform self-calibration for the brightest confusing source – then subtract it out
- Delete phase solutions derived for previous confusing source (1)
- Move to next brightest confusing source, perform self-calibration/imaging cycles – then subtract that source from the dataset (2)
- Perform (1) and (2) until all confusing sources are subtracted. Delete all selfcalibration solutions and image central regions

Before **After**

HIGH DYNAMIC RANGE IMAGING

- Present dynamic range limits (on axis):
	- Phase calibration up to $1000:1$! improve with self-calibration
	- Non-closing data errors continuum ~20,000:1, line >100,000:1
	- After non-closing error correction $^{\sim}10,000,000:1$
- Non-closing errors thought to be dominated by small changes in telescope passbands.
- Spectral line data configurations are the default for all new wide-band radio telescopes.
- In order to subtract out confusion we will need to be able to image with these very high dynamic ranges away from the beam centre

3C273, Davis et al. (MERLIN) 1,000,000:1 peak – RMS

Credit T. Muxlow

SIGNAL TO NOISE

Noise level of a (perfect) homogeneous interferometer:

$$
Noise = \frac{\sqrt{2}k_B T_{sys}}{\sqrt{n_b t \Delta \nu} A\eta}
$$

 T_{sys} - system temperature [K]

 n_b - number of baselines

- where: t integration time [s]
	- Δv bandwidth [Hz]
	- A area of apertures [m]
	- η aperture efficiency

Many factors increase noise level above this value:

- Confusion
- Calibration errors
- Bad data
- Non-closing data errors
- Deconvolution artefacts

Rarely get this from an image. Dependent of flagging accuracy, calibration & adequate deconvolution

But techniques presented in this workshop can get you closer!