

RADIO INTERFEROMETRIC IMAGING

The fun of Fourier Transforms...

Mubela Mutale

Zambia – DARA Unit 4 – July 2019

Talk credits: J. Radcliffe, based on A. Offringa's & N. Jackson's 2015 ERIS talks and T. Muxlow's 2013 ERIS talk

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow!

OUTLINE

- 1. Deconvolution
 - CLEAN
 - Windowing
 - CASA clean/tclean
- 2. Data gridding & weighting
 - uv weighting
 - Telescope weighting
- 3. Wide-field imaging limits
 - Smearing
 - Non-coplanar baselines
 - Primary beam
- 4. Signal to noise & dynamic range

1. DECONVOLUTION

The basic operation of an (ideal) interferometer baseline measures (small sky approximation, $w \rightarrow 0$):

$$V(u,v) \approx \iint I(l,m) e^{-2\pi i (ul+vm)} dl dm$$

We can, in principle, measure I(I,m) for all u,v. We can then use a Fourier transform to recover the sky brightness distribution:

$$I(l,m) \approx \iint V(u,v) e^{2\pi i (ul+vm)} du dv$$

However V(u,v) is not known everywhere but is sampled at particular places on the u-v plane

Nb: (l, m, n) notation is essentially the same as (x, y, z) coordinates used in the prev. talks

DECONVOLUTION

This sampling function can be described by S(u,v) and is equal to 1 when the uv plane is sampled and zero otherwise:

$$I^{D}(l,m) = \iint V(u,v)S(u,v)e^{2\pi i(ul+vm)}dudv$$

I^D(I,m) is known as the 'dirty image' and is related to the real sky brightness distribution by (using convolution theorem of FT):

$$I^D(l,m) = I(l,m) * B$$

Where *B* is known as the 'dirty beam' or the 'point spread function' and is the FT of the sampling function.

$$B(l,m) = \iint S(u,v)e^{2\pi i(ul+vm)}dudv$$

CASA IMAGE CONSTRUCTION

# tclean :: Radio	Int	terferometric	Image F	leconstruction
vis	=		#	Name of input visibility file(s)
selectdata	=	True	#	Enable data selection parameters
field		1140	# #	field(a) to colort
TIEIG	-		#	field(s) to select
spw	=		#	spw(s)/channels to select
timerange	=		#	Range of time to select from data
uvrange	=		#	Select data within uvrange
antonna	_			Soloct data based on antenna/baseline
ancenna			#	Select data based on antenna/baseline
scan	=		#	Scan number range
observation	=		#	Observation ID range
intent	=		#	Scan Intent(s)
datacolumn	=	'corrected'	#	Data column to image(data,corrected)
imagename	=		#	Pre-name of output images
imsize	=	[256, 256]	#	Number of pixels
2011	_	[11 Garagael]	#	Coll cizo
Cell	-	[1.0arcsec]	#	
phasecenter	=		#	Phase center of the image
stokes	=	'I'	#	Stokes Planes to make
projection	=	'SIN'	#	Coordinate projection (SIN, HPX)
startmodel	_		#	Name of starting model image
startmoder		1	#	Name of starting model image
specmode	=	'mts'	#	Spectral definition mode (mts,cube,cubedata)
reffreq	=		#	Reference frequency
ariddor	-	Istandard!	#	Gridding options (standard worsigst widefield
gridder	-	scandaru	#	Gridding options (standard, wproject, widerieid,
			#	mosaic, awproject)
vptable	=		#	Name of Voltage Pattern table
pblimit	-	0.2	#	>PB gain level at which to cut off normalizations
portante		0.2	"	A B guin level at which to but off holmatizations
-	-			
deconvolver	=	'hogbom'	#	Minor cycle algorithm
			#	(hogbom,clark,multiscale,mtmfs,mem,clarkstokes)
restoration	-	True	#	Do restoration steps (or not)
resteringheer		[11]	"	Destering hear share to use Default is the DEF main
rescoringbeam	-	L1	#	Restoring beam snape to use. Default is the PSF main
			#	lobe
pbcor	=	False	#	Apply PB correction on the output restored image
outlightile	_		#	Name of outlier field image definitions
outlierfile	-		#	Name of outlief-field image definitions
weighting	=	'natural'	#	Weighting scheme (natural,uniform,briggs)
uvtaper	=	False	#	uv-taper on outer baselines in uv-plane
nitor	-	500	#	Maximum number of iterations
nicei	-	0.1	π μ	
gain		0.1	#	Loop gain
threshold	=	'0.0mJy'	#	Stopping threshold
nsigma	=	0.0	#	Multiplicative factor for rms-based threshold
			#	stopping
avalanite-			#	Meying sumber of miner evels iterations
cycleniter	-	-1	#	Maximum number of minor-cycle iterations
cyclefactor	=	1.5	#	Scaling on PSF sidelobe level to compute the minor-
			#	cycle stopping threshold.
minnsffraction		0.05	#	PSE fraction that marks the max depth of cleaning in
	17	0.00	# #	the minor evole
			#	the minur cycre
maxpsffraction	1 =	0.8	#	PSF fraction that marks the minimum depth of
			#	cleaning in the minor cycle
2		False	#	Modify masks and parameters at runtime
10101201100	-	14130		Hourry masks and parameters at runtime
interactive	=		"	
interactive	-		n	
usemask	-	'user'	#	Type of mask(s) for deconvolution: user, pb, or
usemask	=	'user'	" #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh
usemask	-	'user'	" # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or
usemask mask	-	'user' []	# # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or
usemask mask	-	'user'	# # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s))
usemask mask pbmask	-	'user' [] 0.0	" # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask
usemask mask pbmask	-	'user' [] 0.0	# # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask
usemask mask pbmask	-	'user' [] 0.0 True	# # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images False : Increment
usemask mask pbmask restart	-	'user' [] 0.0 True	# # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment
usemask mask pbmask restart	-	'user' [] 0.0 True	" # # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename
usemask mask pbmask restart savemodel	-	'user' [] 0.0 True 'none'	" # # # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename Options to save model visibilities (none, virtual,
usemask mask pbmask restart savemodel	-	'user' [] 0.0 True 'none'	" # # # # # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename Options to save model visibilities (none, virtual, modelcolumn)
usemask mask pbmask restart savemodel calcres		'user' [] 0.0 True 'none' True	" ####################################	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename Options to save model visibilities (none, virtual, modelcolumn) Calculate initial residual image
interactive usemask mask pbmask restart savemodel calcres calcref	-	'user' [] 0.0 True 'none' True	. # # # # # # # # # # # # # #	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename Options to save model visibilities (none, virtual, modelcolumn) Calculate initial residual image
usemask mask pbmask restart savemodel calcres calcpsf	-	'user' [] 0.0 True 'none' True True	,, ###############	Type of mask(s) for deconvolution: user, pb, or auto-multithresh Mask (a list of image name(s) or region file(s) or region string(s)) primary beam mask True : Re-use existing images. False : Increment imagename Options to save model visibilities (none, virtual, modelcolumn) Calculate initial residual image Calculate PSF

- tclean is the CASA imaging routine (this replaced clean in CASA v4.6 and earlier)
- To achieve a basic image, need to set:
 - vis your data (measurement set)
 - imagename (output image)
 - niter no. of CLEAN iterations (next slide)
 - imsize size of the image in pixels (needs to be as small as possible to decrease computation time)
 - cell angular extent of each pixel (need to adequately sample the psf)
 Rule of thumb:

cell $\sim \lambda_{\rm f}/3B$

- λ_f wavelength of highest frequency channel
- B longest baseline length

DECONVOLUTION

To recover the real brightness distribution we just need to deconvolve... easier said than done:

- A vast number of images are consistent with the data inc. the dirty beam.
- We need to take a Bayesian approach supply priors (i.e. extra information/ assumptions) so we can find the most probable brightness distribution.
- Simplest scheme (but not only): Sky is mostly empty and consists of a finite number of unresolved point sources.

 \rightarrow The basis of the Hogborn CLEAN algorithm (1974)

HOGBOM CLEAN & VARIANTS

- A brute force deconvolution algorithm using the dirty beam
- Uses prior that the sky consists of unresolved point sources modelled by Dirac delta functions
- Other versions such as
 Clark, multiscale are
 variants of this algorithm

JVLA simulation, 2hr observation targeting two 0.1 Jy point sources + some phase corruption included

Dirty beam Dirty image dirty_im.psf-raster dirty_im.residual-raster 15 15 Relative J2000 Declination (arcsec) Relative J2000 Declination (arcsec) 10 10 5 5 0 0 -5 -5 -10 -10 -15 -15 15 10 -10-1515 -155 -510 5 -5 -100 0 Relative J2000 Right Ascension (arcsec) Relative J2000 Right Ascension (arcsec)

Hogbom CLEAN Image & residual after 1 iteration with 0.5 gain

Hogbom CLEAN Residual after 150 iterations with 0.1 gain

CLEAN map (residual+CLEAN components) after 150 iterations

CLEAN is far from perfect, but we can lend it a hand:

CLEAN consists of two 'cycles':

- I. Minor cycles subtract subimages of the dirty beam
- II. Major cycles Fourier Transform residual map and subtract

We can use windowing to tell the algorithm where the flux lies. This should be used when you **know** the flux you see is real!

UV WEIGHTING

Natural weighted images have low spatial frequencies are weighted up (due to gridding) and gives:

- Best S/N
- Worse resolution

Uniform weighted images low have spatial frequencies weighted down and the data are not utilised optimally (may be subject to a deconvolution striping instability) resulting in:

- Worse S/N
- Best resolution

Compromises exist:

 Briggs (robust) weighting parameter -5 to +5. (next slide)

Implementation in CASA tclean/clean

|--|

= 'natural'

Weighting of uv (natural, uniform, # briggs, ...)

UV WEIGHTING: 'BRIGGS WEIGHTING'

• Originally derived as a cure for striping – Natural weighting is immune and therefore most 'robust'

- Varies effective weighting as a function of local u-v weight density
 - Where weight density is low effective weighting is natural
 - Where weight density is high effective weighting is uniform
- Modifies the variations in effective weight found in uniform weighting → more efficient use of data & lower thermal noise
- ROBUST = 5 is nearly pure uniform ROBUST = + 5 is nearly pure natural ROBUST = 0 is a good compromise (Contoured)
- Can produce images close to uniform weighting resolution with noise levels close to natural weighting. See CASA <u>webpage</u> for other weighting schemes!

WEIGHTING BY TELESCOPE

- Many arrays are heterogeneous e.g. e-MERLIN, EVN & AVN (when built)
- To get the best S/N need to increase weighting on larger telescopes so they contribute more.
- Nb. this can change the resolution depending on the baseline distribution.

UV TAPERING

Gaussian u-v taper or u-v range can smooth the image but at the expense of sensitivity since data are excluded or data usage is non-optimal

Can compromise image quality in VLBI arrays by severely restricting the *u-v* coverage

Controlled by the uvtaper parameter in CASA task tclean/clean

UV TAPERING

3. WIDE-FIELD IMAGING

A 'wide-field' image is defined as:

- An image with large numbers of resolution elements across them
- Or multiple images distributed across the interferometer primary beam

In order to image the entire primary beam you have to consider the following distorting effects:

- 1. Bandwidth smearing
- 2. Time smearing
- 3. Non-coplanar baselines (or the 'w' term) Covered in advanced imaging
- 4. Primary beam response

BANDWIDTH SMEARING

Given a finite range of wavelengths

increasing radius \leftarrow pointing centre \rightarrow increasing radius

- Fringe pattern is ok in the centre but, with higher relative delay, different colours are out of phase
- BW smearing can be estimated using: $\mathrm{FoV}\sim \frac{\lambda}{\Delta\lambda}\frac{\lambda}{B}$
- Can be alleviated by observing and imaging with high spectral resolution with many narrow frequency channels gridded separately prior to Fourier inversion (reduces Δλ).
- Detailed form of response depends on individual channel bandpass shapes

BANDWIDTH SMEARING

Credit T. Muxlow

NVSS image

Effect is radial smearing, corresponding to radial extent of measurements in uv plane

TIME SMEARING

- Time-average smearing (decorrelation) produces tangential smearing
- Not easily parameterized. At declination +90° a simple case exists where percentage time smearing is given by:

• At other declinations, the effects are more complicated.

Standard Fourier synthesis assumes planar arrays or small (I,m) - Only true for E-W interferometers e.g. WSRT

$$V(u, v, w) = \iint \frac{I(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

Need to take into account the 'w' term properly in wide-fields as:

- Errors increase quadratically with offset from phase-centre
- Serious errors result if: $\theta_{\text{offset}}[\text{rad}] \times \theta_{\text{offset}}[\text{beams}] > 1$
- Effects are severe when imaging the entire primary beam

Result: We need to deal with V(u,v,w) rather than just V(u,v)

Two solutions available:

- i. Faceting split the field into multiple images to maintain l, m, w ~ 0 and stitch them together.
- ii. w-projection most used solution, project 3D sky brightness onto 2D tangent plane using w kernel.

See lecture on Advanced Imaging!

JVLA image of GOODS-N showing confusion from a 0.25Jy source to the SE

- Bright radio sources on the edge of the primary beam give rise to ripples in the centre of the field of view
- The primary beam is spectrally dependent, so image subtraction should include such corrections and be performed in full spectral-line mode
- Pointing errors introduce gain and phase changes on the edge of the primary beam. If severe, the apparent source structure may change – attempt multiple snapshot subtraction on timescales comparable with pointing error change

So how do we deal with these sources?

- 1. Outlier fields (the CASA default option) deconvolve the confusing source while imaging the field of interest
- Peeling self-cal. on confusing source (to remove phase errors), get model & subtract source. Return to original calibration & insert model into visibilities
- 3. Direction-dependent calibration see Advanced Imaging lecture

These are listed in order of complexity - note that direction dependent calibration is not available for all telescope arrays

1. Outlier fields

If the source is out of your desired target area, then you can set a small area around the confusing source and deconvolve with the main image.

In CASA, this is achieved by setting multiple images (see right) or set an outlier file (orange box & example below)

```
#content of outliers.txt
#
#
foutlier field1
imagename='outlier1'
imsize=[512,512]
phasecenter = 'J2000 12h34m52.2 62d02m34.53'
mask='box[[245pix,245pix],[265pix,265pix]]'
```

<pre># clean :: Invert</pre>	and	deconvolve imag	ges w	ith selected algorithm
vis	=	'JVLA_combined_	GOODS	N.ms' # Name of input visibility file
imagename	=	['main', 'outli	er']	# Pre-name of output images
outlierfile	=		#	Text file with image names, sizes, centers for
			#	outliers
field	=		#	Field Name or id
spw	=	1.1	#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Range of time to select from data
uvrange	=	1.1	#	Select data within uvrange
antenna	=	1.1	#	Select data based on antenna/baseline
scan	=	1.1	#	Scan number range
observation	=	1.1	#	Observation ID range
intent	=		#	Scan Intent(s)
mode	=	'mfs'	#	Spectral gridding type (mfs. channel, velocity.
			#	frequency)
nterms	=	1	#	Number of Taylor coefficients to model the sky
			#	frequency dependence
reffreg	=	1.1	#	Reference frequency (nterms > 1), '' uses central
			#	data-frequency
aridmode	=		#	Gridding kernel for FFT-based transforms. default='
.			#	None
niter	=	500	#	Maximum number of iterations
gain	=	0.1	#	Loop gain for cleaning
threshold	=	'0.0mJy'	#	Flux level to stop cleaning, must include units:
			#	'1.0mJy'
psfmode	=	'clark'	#	Method of PSF calculation to use during minor cycle
imagermode	=	'csclean'	#	Options: 'csclean' or 'mosaic', '', uses psfmode
cyclefactor	=	1.5	#	Controls how often major cycles are done. (e.g. 5
-			#	for frequently)
cyclespeedup	=	-1	#	Cycle threshold doubles in this number of iteration
multiscale	=	0	#	Deconvolution scales (pixels); [] = standard clean
interactive	=	False	#	Use interactive clean (with GUI viewer)
mask	=	[]	#	Cleanbox(es), mask image(s), region(s), or a level
imsize	=	[[8000, 8000].	[50,	50]] # x and y image size in pixels. Single value:
			#	same for both
cell	=	['0.33arcsec']	#	x and y cell size(s). Default unit arcsec.
phasecenter	=	['J2000 12h36m4	9.4 6	2d12m58.0', 'J2000 12h34m52.2 62d02m34.53'] # Image

1. Outlier fields

0.25 Jy confusing source using outlier field assigned

2. Peeling If outlier fields do not work try peeling!

- After phase calibrating the data, perform self-calibration for the brightest confusing source – then subtract it out
- Delete phase solutions derived for previous confusing source (1)
- Move to next brightest confusing source, perform self-calibration/imaging cycles – then subtract that source from the dataset (2)
- Perform (1) and (2) until all confusing sources are subtracted. Delete all selfcalibration solutions and image central regions

Before

After

HIGH DYNAMIC RANGE IMAGING

- Present dynamic range limits (on axis):
 - Phase calibration up to 1000:1 ! improve with self-calibration
 - Non-closing data errors continuum ~20,000:1, line >100,000:1
 - After non-closing error correction ~10,000,000:1
- Non-closing errors thought to be dominated by small changes in telescope passbands.
- Spectral line data configurations are the default for all new wide-band radio telescopes.
- In order to subtract out confusion we will need to be able to image with these very high dynamic ranges away from the beam centre

3C273, Davis et al. (MERLIN) 1,000,000:1 peak – RMS

Credit T. Muxlow

SIGNAL TO NOISE

Noise level of a (perfect) homogeneous interferometer:

Noise =
$$\frac{\sqrt{2}k_B T_{\text{sys}}}{\sqrt{n_b t \Delta \nu} A \eta}$$

 $T_{\text{sys}} \text{ - system temperature [K]}$ $n_b \text{ - number of baselines}$ where: t - integration time [s] $\Delta v \text{ - bandwidth [Hz]}$ A - area of apertures [m] $\eta \text{ - aperture efficiency}$

Many factors increase noise level above this value:

- Confusion
- Calibration errors
- Bad data
- Non-closing data errors
- Deconvolution artefacts

Rarely get this from an image. Dependent of flagging accuracy, calibration & adequate deconvolution

But techniques presented in this workshop can get you closer!