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Overview

Why do we need radio interferometry?

Resolution,θ =
λ

D
(1)

Instead of bigger dishes, we build longer baselines.

If we have N stations, how many baselines do we form? N(N−1)/2
baselines

Instead of making a direct image of the sky, an interferometer simply
fills the uv plane.

Apply Inverse Fourier Transform to get a representation of the sky.
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Overview

What happens if I remove high (spatial) frequencies in my uv -plane?

I Resolution of the image goes down.

What happens if I remove low (spatial) frequencies in my uv -plane?

I Resolution remains the same.

I Sensitivity to large scale emission is reduced/lost.

How did we do all this in Python?
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Overview

Before we can do imaging, we need to

flag and calibrate the data.

listobs - Summary of the measurement set

flagdata - Flag bad data

plotants - Plot the antenna locations.

plotms - Plot the data in various ways.

flagmanager - Create a copy of your FLAG table.

fringefit - Derive phase/delay corrections.
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Calibration

Single-band or instrumental delays

Multiband delays

Bandpass calibration

Elevation dependent gain calibration
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Applying the corrections

We apply the corrections using applycal

Creates a new column called CORRECTED DATA.

Data size grows by a factor ∼ 2.

If we want, we can also split the data with split
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Deconvolution

From the lecture, we saw

ITrue(l ,m) =

∫ ∞
−∞

∫ ∞
−∞

VTrue(u, v) ei2π(ul+vm) du dv (2)

But, we do not measure V (u, v) for all values of u and v .

So, we define a window function W (u, v)

IObs(l ,m) =

∫ ∞
−∞

∫ ∞
−∞

W (u, v) VTrue(u, v) ei2π(ul+vm) du dv (3)

IObs(l ,m) = F−1[W (u, v) V (u, v)] (4)

IObs(l ,m) = F−1[W (u, v)] ~ F−1[V (u, v)] (5)
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Deconvolution

From the previous slide,

IObs(l ,m) = F−1[W (u, v)] ~ F−1[V (u, v)] (6)

I F−1[W (u, v)] is called “dirty beam”

I IObs(l ,m) is called the “dirty image”

I F−1[V (u, v)] is the “true sky”

The “dirty image” is the “true sky” convolved by the “dirty beam”.

To get the “true” sky image → we deconvolve our “dirty image” with
the “dirty beam”
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