Summary – Week 1

Sarrvesh S. Sridhar & Mubela Mutale

ASTRON & U. of Hertfordshire

July 5, 2019

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-34-0) 1 / 8

• Why do we need radio interferometry?

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0) 2 / 8

• Why do we need radio interferometry?

Resolution,
$$
\theta = \frac{\lambda}{D}
$$
 (1)

• Instead of bigger dishes, we build longer baselines.

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0) 2 / 8

• Why do we need radio interferometry?

Resolution,
$$
\theta = \frac{\lambda}{D}
$$

- Instead of bigger dishes, we build longer baselines.
- If we have N stations, how many baselines do we form?

(1)

• Why do we need radio interferometry?

$$
Resolution, \theta = \frac{\lambda}{D} \tag{1}
$$

- Instead of bigger dishes, we build longer baselines.
- \bullet If we have N stations, how many baselines do we form? N(N-1)/2 baselines

• Why do we need radio interferometry?

$$
Resolution, \theta = \frac{\lambda}{D} \tag{1}
$$

- Instead of bigger dishes, we build longer baselines.
- \bullet If we have N stations, how many baselines do we form? N(N−1)/2 baselines
- Instead of making a direct image of the sky, an interferometer simply fills the uv plane.

• Why do we need radio interferometry?

$$
Resolution, \theta = \frac{\lambda}{D} \tag{1}
$$

- Instead of bigger dishes, we build longer baselines.
- \bullet If we have N stations, how many baselines do we form? N(N−1)/2 baselines
- Instead of making a direct image of the sky, an interferometer simply fills the uv plane.
- Apply Inverse Fourier Transform to get a representation of the sky.

• What happens if I remove high (spatial) frequencies in my uv-plane?

- What happens if I remove high (spatial) frequencies in my uv-plane?
	- Resolution of the image goes down.

- What happens if I remove high (spatial) frequencies in my uv-plane?
	- Resolution of the image goes down.
- What happens if I remove low (spatial) frequencies in my uv-plane?

- What happens if I remove high (spatial) frequencies in my uv-plane?
	- Resolution of the image goes down.
- What happens if I remove low (spatial) frequencies in my uv-plane?
	- \blacktriangleright Resolution remains the same.
	- \triangleright Sensitivity to large scale emission is reduced/lost.

- What happens if I remove high (spatial) frequencies in my uv-plane?
	- \triangleright Resolution of the image goes down.
- What happens if I remove low (spatial) frequencies in my uv-plane?
	- \blacktriangleright Resolution remains the same.
	- \triangleright Sensitivity to large scale emission is reduced/lost.
- How did we do all this in Python?

• Before we can do imaging, we need to

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0) 4 / 8

• Before we can do imaging, we need to flag and calibrate the data.

- Before we can do imaging, we need to flag and calibrate the data.
- listobs -

- Before we can do imaging, we need to flag and calibrate the data.
- **.** listobs Summary of the measurement set

- Before we can do imaging, we need to flag and calibrate the data.
- **.** listobs Summary of the measurement set
- flagdata -

- Before we can do imaging, we need to flag and calibrate the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- plotants -

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **· flagdata** Flag bad data
- **plotants** Plot the antenna locations.

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- plotms -

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- **plotms** Plot the data in various ways.

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- **plotms** Plot the data in various ways.
- flagmanager -

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- **plotms** Plot the data in various ways.
- **flagmanager** Create a copy of your FLAG table.

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- **plotms** Plot the data in various ways.
- **flagmanager** Create a copy of your FLAG table.
- \bullet fringefit -

- Before we can do **imaging**, we need to **flag** and **calibrate** the data.
- **.** listobs Summary of the measurement set
- **o flagdata** Flag bad data
- **plotants** Plot the antenna locations.
- **plotms** Plot the data in various ways.
- **flagmanager** Create a copy of your FLAG table.
- **fringefit** Derive phase/delay corrections.

Calibration

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0) 5 / 8

Calibration

- Single-band or instrumental delays
- **•** Multiband delays
- **•** Bandpass calibration
- Elevation dependent gain calibration

Applying the corrections

- We apply the corrections using applycal
- **Creates a new column called CORRECTED DATA.**
- Data size grows by a factor \sim 2.
- **If we want, we can also split the data with split**

• From the lecture, we saw

$$
I_{\text{True}}(l,m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\text{True}}(u,v) e^{i2\pi(u l + v m)} du dv \qquad (2)
$$

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0) 7/8

• From the lecture, we saw

$$
I_{\text{True}}(l,m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\text{True}}(u,v) e^{i2\pi(u l + v m)} du dv \qquad (2)
$$

• But, we do not measure $V(u, v)$ for all values of u and v.

DARA Unit 4, Lusaka, Zambia (2019) [Summary – Week 1](#page-0-0)

• From the lecture, we saw

$$
I_{\text{True}}(l,m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\text{True}}(u,v) e^{i2\pi(u l + v m)} du dv \qquad (2)
$$

- But, we do not measure $V(u, v)$ for all values of u and v.
- So, we define a window function $W(u, v)$

$$
I_{\rm Obs}(l, m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u, v) V_{\rm True}(u, v) e^{i2\pi (ul + v m)} du dv \qquad (3)
$$

• From the lecture, we saw

$$
I_{\text{True}}(l,m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\text{True}}(u,v) e^{i2\pi(u l + v m)} du dv \qquad (2)
$$

- But, we do not measure $V(u, v)$ for all values of u and v.
- So, we define a window function $W(u, v)$

$$
I_{\rm Obs}(l, m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u, v) V_{\rm True}(u, v) e^{i2\pi (ul + v m)} du dv \qquad (3)
$$

$$
I_{\text{Obs}}(l,m) = \mathcal{F}^{-1}[W(u,v) \ V(u,v)] \tag{4}
$$

• From the lecture, we saw

$$
I_{\text{True}}(l,m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_{\text{True}}(u,v) e^{i2\pi(u l + v m)} du dv \qquad (2)
$$

- But, we do not measure $V(u, v)$ for all values of u and v.
- So, we define a window function $W(u, v)$

$$
I_{\rm Obs}(l, m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u, v) V_{\rm True}(u, v) e^{i2\pi (ul + v m)} du dv \qquad (3)
$$

$$
I_{\text{Obs}}(l,m) = \mathcal{F}^{-1}[W(u,v) \ V(u,v)] \tag{4}
$$

$$
I_{\text{Obs}}(l,m) = \mathcal{F}^{-1}[W(u,v)] \circledast \mathcal{F}^{-1}[V(u,v)] \tag{5}
$$

ASTR

• From the previous slide,

$$
I_{\text{Obs}}(l,m) = \mathcal{F}^{-1}[W(u,v)] \circledast \mathcal{F}^{-1}[V(u,v)] \qquad (6)
$$

- \blacktriangleright $\mathcal{F}^{-1}[W(u, v)]$ is called "dirty beam"
- \blacktriangleright I_{Obs} (I, m) is called the "dirty image"

$$
\blacktriangleright \mathcal{F}^{-1}[V(u, v)] \text{ is the "true sky"}
$$

- The "dirty image" is the "true sky" convolved by the "dirty beam".
- \bullet To get the "true" sky image \rightarrow we deconvolve our "dirty image" with the "dirty beam"

AST