Tailoring calibration

Mubela Mutale

Slides originally by: Anita Richards

Acknowledgements: Robert Laing (ESO), Rick Perley (NRAO)

Zambia – DARA Unit 4 – July 2019

How do we know what to do?

➡ How do you know what parameters to set?
Image of the set of the

⇔ Some...

depend on physical/instrument properties (fixed for a given observation)

⇒ Others...

depend on your science goals

⇒ Image pixel size: >3 pixels across synthesised beam ($\Theta = \min_{\lambda}/\max_{baseline}$ (c.f. Imaging talk) ⇒ Easy to pipeline

Observation-dependent parameters

⇒ Some things Calibration strategy depends on...

- ☞ Observing frequency, baselines etc.
- $\ensuremath{\,^{\ensuremath{\ensuremath{\mathbb{B}}}}$ Weather and source elevation
- ☞ Calibration source properties
- Imaging depends on all these and on science goals
 - Faint, extended source?
 - Very bright, self-calibratable source?
 - ☞ Spectral lines?
 - ☞ Sources all over the field of view?

Choosing reference antenna

The antenna with the best chance of good solutions to all other antennas

Most short baselines? Greater atmospheric differences on long baselines

Delay calibration

- ⇒ Delay corrections for linear phase gradients:
- ➡ Inspect phase v. frequency
- ⇒ Only worth correcting delay if you can see it
- Usually stable for hours but averaging solint limited (~scan) by time-dependent phase stability

Bandpass calibration

⇔ Correct BP cal phase v. time first (see following slides)

⇒ In Bandpass, average in time for as long as possible for best S/N per channel

➡ Both BP cals have same amp wiggles

 \Rightarrow Could combine, interpolate or use just the one with best S/N

Bandpass calibration

⇒ Check BP data phase v. frequency also

5.4

Visibility errors and noise

 \Rightarrow Lowest possible noise is 'thermal' limit based on T_{sys} :

$$\sigma_{sys} = \frac{\langle T_{sys} \rangle}{\eta_A A_{eff} \sqrt{N (N-1)/2} \, \Delta \nu \, \Delta t N_{pol}}$$

Where
$$T_{sys} = \frac{1}{\eta_A e^{-\tau_{atm}}} \left[T_{Rx} + \eta_A T_{sky} + (1 - \eta_A) T_{amb} \right]$$

⇒So you can only improve on this by

Bigger/more efficient antennas (A_{eff}, h_A) or more (N)

Ever noise Rx and/or T_{sky} (observing conditions)

[™]Or, for a given array

B Observe for longer/wider bandwidth

What accuracy is needed?

- ⇒What is the effect on imaging of visibility errors?
- ⇒How good does the calibration need to be?
- ⇒How bright is your target?
- ⇒Is the peak bright enough to self-cal?
- How faint are the weakest
- ⇒features of interest?

What accuracy is needed?

⇒Faint target: need to reach thermal noise

- Bright target: may be dynamic range limited
- Need to perfect calibration and imaging
- ⇒Astrometry:
- Need high phase accuracy for position accuracy
- ⇒Special strategies
- ⇒Several phase reference sources

Can use multiple elevations/frequencies to measure delay and antenna positions with high accuracy

Phase errors and dynamic range

⇒Simplified: flat, linear array, N antennas

Image: Single integration observation of a point source
⇒Direction such that we only need to consider u axis

$\mathbb{N}^{\mathbb{N}} N(N-1)/2$ visibilities

 \Rightarrow Each baseline visibility is a d spike in the uv plane

All but one are 'perfect' (unit amplitude, zero phase)

 \Rightarrow These have $V(u) = d(u - u_k)$ for the kth baseline

⇒Phase error on baseline length u_0 of ϕ_{ε} radians

$$rightarrow V(u) = d(u - u_0) e^{-i\Theta \varepsilon}$$

Phase errors and dynamic range

⇒Image is formed by Fourier transform

 $I = \int V(u) e^{i2pux} du$

 \Rightarrow Each baseline contributes at position u_k and complex conjugate $-u_k$ in the visibility plane

 \Rightarrow Evaluating the term in the integral for each of the [N(N-1)/2]-1 good baselines gives $2\cos(2pu_k x)$

 \Rightarrow Bad baseline gives $2\cos(2pu_0x - \phi_{\varepsilon})$

 $rac{1}{2}$ ~ 2[cos(2pu₀x) + $φ_ε$ sin(2pu₀x)] for small $φ_ε$ (in radians)

⇒The image integral thus sums to $I(x) = 2\phi_{\epsilon} \sin(2\pi u_0 x) + 2 \sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x)$

Phase errors and dynamic range

⇒The synthesised beam is given by

$$B(x) = 2 \sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x) = N(N-1) \text{ for } u = 0$$

Deconvolution is the subtraction of the beam from the image leaving the residual error

$$R(x) = \left[2\phi_{\epsilon} \sin(2\pi u_0 x) + 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x) \right] - 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x)$$
$$= 2\phi_{\epsilon} \sin(2\pi u_0 x)$$

 \Rightarrow an 'odd' sinusoidal function of amplitude 2f_e, period $1/u_0$

➡To maintain the flux scale, integrals are normalised

Calibration errors and dynamic range ⇒The rms of the residual

$$R(x) = \frac{2\phi_{\epsilon}\sin(2\pi u_0 x)}{N(N-1)}$$

 \Rightarrow Over the whole map is $\sqrt{2} \phi_{\epsilon} / N(N-1)$

 \Rightarrow For small phase error $φ_ε$, large *N*, the ratio of the peak / noise residual is thus

□ Dynamic range $D_B(\phi_{\epsilon}) \sim I(x) / R(x) \sim N^2 / \sqrt{2} \phi_{\epsilon}$

☞ e.g., radians (5°)~0.09

 \Rightarrow Amplitude error ϵ on a single baseline has the effect

 $V(u) = (1+\varepsilon)d(u - u_0) e^{-i\phi}$ leading (via a cos function) to

 \Rightarrow Dynamic range $D_{\rm B}(ε) \sim N^2 / \sqrt{2} ε$

⇒A phase error of 5° is as bad as a 10% amp error

⇒Phase errors are sin (odd), amp are cos (even)

Calibration errors and dynamic range ⇒So far considered one-baseline error, one integration

 \Rightarrow All baselines to one antenna affected by same error: $\square(N-1)$ bad baselines ($\sim N$ for large N)

 $\mathbb{D}_{ant} = D_{B} / (N-1) = [N^{2} / (N-1)] / \sqrt{2} \varphi_{\varepsilon} \sim N / \sqrt{2} \varphi_{\varepsilon}$

⇒If all baselines are affected by random noise,

$$\Rightarrow D_{all} = D_B / \sqrt{[N(N-1)/2]} = \sqrt{[N(N-1)/2]} / \phi_{\varepsilon} \sim N / \phi_{\varepsilon}$$

 \Rightarrow These expressions are valid if errors are correlated in time, e.g. single phase-ref scan, not much change in *u* (or *v*)

⇒For M periods (scans?) between which noise is uncorrelated

□ Dynamic range is increased to D_{all} ~ $V M N/φ_ε$

Calibration for good dynamic range

⇒Implications so far: take a 10-antenna array

Twelve independent scans on a target, phase reference and other calibration applied, well edited

 \Rightarrow Residual phase scatter 20° : $D_{all} \sim \sqrt{M} N/\phi_{\epsilon}$

⇒~ 100 dynamic range limit

□ Can you improve by self-calibration?

 \Rightarrow No if map noise have reached the T_{sys} limit and remaining errors are pure noise. If not:

Maybe, if some antennas are still imperfectly calibrated

☞Calibrate per antenna, per scan (or longer)

⇔Need potential S/N per interval high enough to get $\phi_{\epsilon} < 20^{\circ}$

Time-dependent phase cal

Apply bandpass/delay corrections

⇒Phase reference source:

Need to interpolate solutions to target

⇒Does the phase-ref phase track the target phase?

⇒Consistent
 trend seen here
 Target
 wiggles may be
 structure

r Some deviations

Time-dependent phase cal

Need to interpolate phase-ref solutions to target

☞ Ideally no more than 2 solutions per phase-ref scan

Allows simple linear interpolation

Properly Properly

⇒Check enough S/N in e.g. half scan

Seeing low scatter by eye is OK!

Time-dependent amp cal

Apply phase solutions first to allow longer solint for amplitude calibration

PAvoid decorrelation

If necessary, use shorter phase-only solint just for this

⇒Amp scatter per scan usually just noise

 Average whole scan
 Solutions will track changes OK

Self-cal timescales

Target phase (after phs-ref corrections) changes rapidly

☞May be partly source structure, but seen even on short b'lines

⇒Not just random noise even on 10-sec timescales

Calibration timescales

